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Natural convection in an enclosed cavity with conjugate effects in the walls was simulated over a broad
range of Grashof number and the limits of convergence were investigated. A fuzzy controller was
employed to adjust relaxation factors dynamically during code execution. The controller operates with
a rule set that mimics human expert decision making on the appropriate choice of relaxation factor. Per-
formance of the controller was compared to that of simulations with fixed relaxation factors. Cases inves-
tigated involved conjugate heat transfer in one or more walls of a rectangular cavity. Governing equations
of continuity, momentum and energy in laminar flow were solved using a finite difference method. Sim-
ulating natural convection is more challenging at higher Grashof numbers and convergence is more dif-
ficult to attain. The controller was able to extend the range of convergence in all the cases, typically by 4
orders of magnitude, and in one case, by 6 orders of magnitude.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in enclosed cavities has attracted research
because of its industrial applications including reactor design,
cryogenic systems, cooling of radioactive waste containers, and
solar collectors [1–4]. Iterative methods form the basis of solving
simultaneously the continuity, momentum, and energy equations
in fluid flow in enclosed cavities and heat transfer associated with
it. The SIMPLER algorithm [5], a finite difference iterative proce-
dure, uses simple substitution in order to solve the discretized gov-
erning equations of fluid motion, energy, and scalar transport.
However as stated in [6], the success of the iterative method in
most CFD problems relies on the relaxation of state variables.
The optimum relaxation factor depends on the nature of the prob-
lem, number of grid points used for discretization, grid spacing,
iterative procedure used and other parameters. The optimum
relaxation factor cannot be analytically determined. In relaxation
methods, the value of the variable to be used for obtaining the
solution in the next iteration is the value in the current iteration
plus a fraction of the difference between the current value and
the predicted value.

All computational fluid mechanics relies on heuristic selection
of relaxation factors for success; for example, a typical rule of
thumb is to set relaxation factors at 0.9 and lower them if the sim-
ulation diverges. Selection of a relaxation factor is a simple heuris-
tic approach. This paper demonstrates that CFD can be
ll rights reserved.

@rpi.edu (D.A. Kaminski).
dramatically improved by using the more sophisticated heuristic
approach embodied in fuzzy logic. By using the example of natural
convection in an enclosure with conjugate effects, we will show
that converged solutions can be obtained for a much wider range
of conditions than the simple choice of a constant relaxation factor.

Research concerned with using soft computing methods such as
fuzzy logic or neural networks to aid CFD simulations are limited in
number in the literature. Dragojlovic et al. [6] used fuzzy logic to
control convergence in a turbulent flow simulation. Iida et al. [7]
published a study in which wobbling adaptive control was applied
to a CFD simulation of the Benard problem. Studies to improve the
convergence of genetic algorithms using fuzzy control have been
reported in the literature [8–10]. Xunliang et al. [11] controlled
the convergence criteria using fuzzy logic based on the residual
ratio of the momentum or energy equation.

The relaxation method discussed in the present work enables
and improves convergence by slowing down the update rate of
the system matrix coefficients. The iterative scheme used in this
work is dependent upon the relaxation factor according to the fol-
lowing equation:

/0p ¼ /�p þ a/

P
anb/nb þ b

ap
� /�p

� �

where 0 < a/ < 1 is the relaxation factor for variable /, /0p is the
value of the state variable at node P to be used for the next iter-
ation, /�p is the value of the state variable at node P in the previ-
ous iteration, /nb are the values of the variables at the
neighboring nodes and ap, anb, and b are the constants from the
discretized equation.
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Fig. 1. Rectangular domain with conduction along the right wall.

Nomenclature

anb coefficients for neighboring nodes in the discretized
equation

aP coefficient of / at node P in the discretized equation
Af amplitude of the harmonic with frequency f
A�f normalized amplitude of the harmonic with frequency f
b source term in the discretized equation
cp specific heat
Cr conductance ratio
e(n) error on iteration n
De(n) change in error between iteration n � 1 and n
f frequency
g acceleration of gravity
Gr Grashof number, Gr = q2gb(Th � Tc)w3/l2

Hf discrete Fourier transform
Ho Fourier transform at f = 0
kf thermal conductivity of the fluid
kw thermal conductivity of the wall
L enclosure width
N number of previous iterations over which the Fourier

transform is taken
NB ‘‘negative big”
NM ‘‘negative medium”
NS ‘‘negative small”
px constant used in the membership functions,

px = 0.000893
py constant used in the membership functions, py = 0.6329
pz constant used in the weighting function and member-

ship functions, pz = 27.785
P pressure of the fluid
P* effective pressure, P* = P + gqcy
PB ‘‘positive big”
PM ‘‘positive medium”
PS ‘‘positive small”
q applied heat flux
S/ magnitude of the solution vector for variable /
S/ average magnitude of solution vector

t thickness of the vertical wall
T temperature
Tamb ambient temperature
Tc cold wall temperature
Th hot wall temperature
u horizontal component of velocity vector
v vertical component of velocity vector
w height of the wall
Wf weighting function for frequency f
x coordinate in the horizontal direction
y coordinate in the vertical direction

Greek symbols
a relaxation factor
a/ relaxation factor for variable /
b volume expansivity
d/ relative change in relaxation factor for variable /
dc1 relative change in relaxation factor at the centroid of

area 1
h inclination angle with respect to the vertical axis
l dynamic viscosity
lmf value of the membership function
q density of the fluid
qc reference density of the fluid
/ generic symbol for the value of a state variable, either u,

v, or T
/n value of the state variable in the current iteration
/0n value of the state variable to be used in the next itera-

tion
/n�1 value of the state variable in the previous iteration
/nb values of the state variables at the neighboring nodes
/0p value of the state variable at point P to be used in the

next iteration
/�p value of the state variable at point P from the previous

iteration
w non-dimensional temperature w = (T � Tc)/(Th � Tc)
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The present work deals with the computational fluid dynamics
(CFD) investigation of laminar natural convection in enclosures
with differentially heated conditions using fuzzy logic. The goal
of the work is to find the limit where the controller algorithm fails
to find a converged solution and compare this to the limit of con-
vergence for fixed relaxation factors. Problems concerned with nat-
ural convection in enclosed cavities having conjugate heat transfer
in one or more walls are investigated.

2. Problem analyzed

2.1. Problem 1 – Rectangular cavity with conjugate heat transfer in
one wall

A schematic of the problem considered is shown in Fig. 1. The
problem consists of a rectangular enclosure with isothermal
boundary conditions at the extreme sides, i.e. cold (Tc) and hot wall
(Th) conditions at the left and right sides, respectively. The cavity is
filled with a constant property fluid and the horizontal sides are
insulated. Three walls of the enclosure are assumed to be of negli-
gible wall thickness while the fourth, the right vertical wall, has a
thickness t. The thickness ratio (t/L) is kept at 0.2. Because of the
temperature gradient along the x direction, a buoyancy-driven
recirculation pattern appears in the cavity. Firstly the conjugate
heat transfer, i.e. the conduction through the thick walls, is
analyzed by considering the conduction at the right side, i.e. hot-
wall side only. The solid wall at the right side is simulated by
substituting a very high value of the dynamic viscosity in the algo-
rithm. The effect of wall conduction on natural convection flow in
an enclosure was studied by Balvanz and Kuehn [12]; however,
they considered the case of volumetric heat generation within
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the wall, and the outer face of the thick wall was taken to be insu-
lated. Larson and Viskanta [13] accounted for wall conduction
effects in an enclosed fire problem, but only one-dimensional wall
conduction was considered. The problem definition and boundary
conditions investigated in the present study are different from the
above studies in that the conjugate effect is taken into account in
two-dimensional analysis and for different sides as described in
the later sections.

The flow was assumed to be Newtonian, incompressible, lami-
nar, two-dimensional and steady. Viscous dissipation was
neglected. All thermophysical properties were assumed constant
and independent of the pressure and temperature fluctuations.
However the density was treated using the Boussinesq approxima-
tion. The buoyancy force is in the y-direction.

The conservation equations for mass, momentum, and energy
are given in Patankar [5] as
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where P* is an effective pressure given by

P� ¼ P þ gqcy

The velocity components at the boundaries are taken as zero. At
the solid-liquid interface, the temperature and the heat flux must
be continuous; this condition is mathematically expressed as

@w
@x

� �
fluid
¼ kw

kf

@w
@x

� �
wall

where w is the non-dimensional temperature given by

w ¼ T � Tc

Th � Tc

and kw and kf represent the thermal conductivities of wall and fluid,
respectively.

The conservation equations listed above were discretized by a
finite volume approach as defined by the following equation:

ap/p ¼
X

anb/nb þ b

where ap is the coefficient for the point P under consideration, anb’s
are the coefficients of neighboring grid points, /p is the value of the
dependent variable for the equation under consideration, /nb ’s are
the values of the neighboring grid points and b is the source term.
The generic variable / is used to represent u, v, and T.

At every iteration, the assumed values of the solution vector
were updated with under-relaxed values according to the follow-
ing equation:

/0n ¼ /n�1 þ a/ð/n � /n�1Þ

where a/ is a relaxation factor for variable / which varies between 0
and 1, /0n is the value of the state variable to be used for the next iter-
ation n, /n is the value obtained from solution of the system of equa-
tions on iteration n � 1, and /n�1 is the value assumed before
iteration n � 1. Each of the two velocity components and the temper-
ature are relaxed by separate relaxation factors. Thus, there are three
relaxation factors specified on each iteration. Each relaxation factor is
global and applies in every control volume over the entire domain. In
the present algorithm due to Dragojlovic et al. [14], the controller ad-
justs the value of the relaxation factor based on the history of the
solution curve for the last 50 iterations. At each iteration, the magni-
tude of the solution vector for variable / is defined as

S/ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1

Xm

j¼1

½/nði; jÞ�
2

vuut

where i and j are node numbers, l and m are the total number of
nodes in the x and y directions, and /n is the value of variable /
on the nth iteration. Exploratory calculations reported in Dragojlovic
et al. [14] showed that some types of solution history curves con-
verge quickly while others converge slowly or not at all. Generally,
for low values of relaxation factor, the curve rises or falls monoton-
ically or exhibits mild oscillations with a very slow rate of conver-
gence. Somewhat higher relaxation factors produce oscillatory
behavior with improved convergence. Raising the relaxation factor
further increases the frequency and magnitude of the oscillations,
while accelerating convergence. At some point, the oscillations
become too pronounced and the convergence rate degrades. At very
high relaxation factors, the solution history curve may oscillate on
every iteration and either diverges or oscillates indefinitely.

Spectral analysis is applied to the solution history curve to
identify desirable behavior. The number of previous iterations
considered is N, where

N ¼ n if n < 50
N ¼ 50 if n P 50

and n is the current number of iterations in the simulation. The solu-
tion history curve can be treated as the discrete time representation
of a signal. Taking a discrete Fourier transform on the data produces

Hf ¼
XN�1

k¼0

S/
k e2pikf

where f is the frequency of the periodic components of the signal
and

�1
2
6 f 6

1
2

The quantity i is the square root of �1. The Fourier transform is
taken on each iteration for each of the three possible values of /:
u, v, and T.

The Fourier transform is used to identify how important partic-
ular harmonics are in the solution history curve. Only the frequen-
cies that have physical meaning are included, so

0 6 f 6
1
2

When f = 0, the corresponding harmonic does not oscillate at all and
when f = ½, the harmonic ‘‘zig-zags” on every iteration. The ampli-
tude of the harmonic with frequency f is

Af ¼
2
N

XN�1

k¼0

S/
k e2pikf ¼ 2

N
Hf ¼ af þ ibf

where af and bf are the amplitudes of the cosine and sine functions,
respectively. The amplitude of the harmonic is normalized by divid-
ing it by the average magnitude of the solution vector. Using the
values over the past N iterations, this average magnitude is

S/ ¼ 1
N

XN�1

k¼0

S/
k ¼

1
N

H0

The normalized amplitude of the harmonic with frequency f is

A�f ¼
jAf j
S/
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2ðHf Þ þ Im2ðHf Þ
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Fig. 2. (a) Input membership functions, (b) output membership functions:
px = 0.000893, py = 0.6329, pz = 27.785.

Table 1
The error is listed to the left of the table and the change in error below the bottom of
the table. Cells in the table represent the output fuzzy set that results from the size of
the error and the change in error.

A. Jain, D.A. Kaminski / International Journal of Heat and Mass Transfer 52 (2009) 3446–3455 3449
where Re and Im denote the real and imaginary parts of the Fourier
transform.

As reported in Dragojlovic et al. [14], optimal convergence
occurs just before the iteration becomes unstable. The onset of
instability is heralded by the appearance of high-frequency har-
monics with significant amplitude. The low frequency harmonics
are desirable and accelerate convergence while the high frequency
ones tend to drive the solution into divergence. The fuzzy control-
ler is designed to keep high frequency harmonics at very low
amplitudes while encouraging moderate amplitude low frequency
harmonics.

To highlight the high frequency harmonics, an arbitrarily-de-
fined weighting function is used:

Wf ðf Þ ¼ e
pzf

fmax

where fmax = ½ is the maximum frequency of one cycle per two iter-
ations. The constant pz = 27.785 was chosen to optimize the perfor-
mance of the controller for conjugate convection in a square cavity
with Gr = 106, as described in Dragojlovic et al. [14].

The weighting function takes on low values at low frequencies
and high values at high frequencies. The normalized amplitude of
the harmonic is multiplied by the weighting function and the
result is compared with unity. The desired goal is to keep this prod-
uct near unity, i.e.

Wf ðf ÞA�f � 1

If Wf ðf ÞA�f is much less than unity, then all frequencies are sup-
pressed and convergence is very slow. We would like to encourage
the low frequency harmonics, while limiting the high frequencies. If
Wf ðf ÞA�f � 1, the low frequencies have significant amplitude and the
high frequencies are limited. If Wf ðf ÞA�f is much greater than unity,
the high frequencies are too prominent and divergence is likely.

The task of selecting a relaxation factor is formulated as a con-
trol problem. We define the error on iteration n as

eðnÞ ¼ lnðmax½Wf ðf ÞA�f �Þ

The argument of the logarithm is the maximum weighted ampli-
tude of all the frequencies in the solution history. When the largest
weighted amplitude is near unity, the error becomes zero.

The fuzzy rules are formulated in terms of the error and the
change in error. The change in error from one iteration to the next
is simply defined as

DeðnÞ ¼ eðnÞ � eðn� 1Þ

Fuzzy logic is a technique for expressing uncertain linguistic vari-
ables such as ‘‘big” and ‘‘small” into quantifiable values that can
be used to make decisions. In this case, we express the error as
‘‘negative big (NB),” ‘‘negative medium (NM),” negative small
(NS),” ‘‘positive small (PS),” ‘‘positive medium (PM),” or ‘‘positive
big (PB).” The degree to which an error falls into a particular cat-
egory is computed with the triangular input membership func-
tions shown in Fig. 2. The function PS is the downward sloping
line defined over the domain from 0 to pypz on the abscissa;
PM is a triangular function defined from 0 to pz and PB is two
continuous line segments defined from pypz to infinity. The
degree of membership, plotted along the ordinate, takes on the
value 1 if the error is most certainly in that category and the
value zero if the error is definitely not in that category. Values
between 0 and 1 are used to quantify how well an error fits in
a particular category. An error can fit in two categories simulta-
neously. For example, if the value of the error is (pypz + pz)/2,
the PM function returns 0.5 and the PB function also returns
0.5. This is equivalent to a panel of human experts in which half
of them decide that the error is positive medium and half decide
it is positive big, but no one chooses positive small.
The input functions are used to categorize the size of the error and
the change in error. Then a fuzzy rule set is used to determine the
appropriate action that the algorithm should take. In this case, ac-
tions are changes in the relaxation factors for the variable in question
(either u, v, or T). The output variables determined by the control sys-
tem are the relative changes in relaxation factors defined as

d/ðnÞ ¼ Da/ðnÞ
a/ðnÞ ¼

a/ðnÞ � a/ðn� 1Þ
a/ðnÞ

where a/(n) is the relaxation factor for the variable / at the nth

iteration.
The fuzzy rule set includes the rules detailed in Table 1. Each

cell in the table represents one rule. For example, one rule is

IF the error e(n) is negative small AND the change in error De(n)
is negative medium
THEN the change in the relaxation factor d/(n) is positive medium

If the error is small, we are probably close to convergence; if the
change in error is negative medium, the error is smaller than it
was on the last iteration and we are approaching convergence at
a good rate. This implies that we may be able to increase the relax-
ation factor to drive the simulation to converge more rapidly. The
other rules in Table 1 also adjust relaxation factors to either
increase or decrease based on heuristic reasoning about what is
likely to improve convergence or avoid divergence.

The application of the sample rule is illustrated in Fig. 3. At a
particular iteration, the error e(n) falls within the category ‘‘nega-
tive small (NS)”, and the degree of membership is 0.3. As a result,
we ‘‘fill up” the output membership function, PM, to the height 0.3,
as shown by the shaded area in Fig. 3. The change in error falls
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Table 2
Comparison of fuzzy logic algorithm with benchmark problem.

Gr Cratio Liaqat and Baytas [15],
Nu

Kaminski and Prakash [16],
Nu

Present
Nu

103 1.0 0.877 0.87 0.865
105 1.0 2.082 2.08 2.09
107 1.0 2.843 2.87 2.859

Table 3
Number of iterations at different Grashof numbers for varying relaxation factors and
the controller algorithm for Cr = 0.01.

Gr Relaxation factor

0.1 0.3 0.6 0.9 Controller

Cr = 0.01, h = 0�
107 17850 4748 1526 670 874
2 � 107 16525 4331 1661 div 796
3 � 107 15768 4150 1900 div 736
4 � 107 15253 4182 div div 724
8 � 107 14235 4865 div div 1132
108 14048 div div div div
109 div div div div 7462
1010 div div div div 5420
1011 div div div div 5655
1012 div div div div 9726
1015 div div div div div
1020 div div div div div

Cr = 0.01, h = 45�
107 19817 5361 1806 629 479
4 � 107 18744 div 1990 div 840
8 � 107 19138 div div div 1132
108 19419 div div div 1119
109 div div div div 8332
1010 div div div div 2387
1011 div div div div div
1012 div div div div div
1015 div div div div div

Cr = 0.01, h = 80�
107 25882 6490 1902 502 547
4 � 107 26086 6498 2189 div 670
8 � 107 27571 div div div 1204
108 26571 div div div 39495
109 div div div div 2285
1010 div div div div 5259
1011 div div div div 6881
1012 div div div div div
1013 div div div div div
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within the category NM to the height 0.8. We consider the area of
the output PM filled to the height 0.8. We then choose the smaller
of the two output areas, which is the shaded area. We say that the
rule has ‘‘fired” and produced an output area.

More than one rule may fire on a given iteration. For example,
the value of the error in Fig. 3 fits in the category NM as well as
in the category NS. If multiple rules fire, several different areas
may result in the output. Fig. 4 shows a sample result from two
rules firing. The quantities dc1 and dc2 are the x components of
the centroids of areas A1 and A2, respectively. In this case one rule
is suggesting a PM change in relaxation factor and the other a NS
change, as if one expert were saying ‘‘raise it somewhat” and the
other were saying ‘‘lower it a bit”. To decide on a final ‘‘crisp” value,
the area-weighted average of the two d values is used, i.e.

d/ðnÞ ¼ Da/ðnÞ
a/ðnÞ ¼

A1dc1 þ A2dc2

A1 þ A2

Note that the positive changes in relaxation factor (raising it)
are much smaller than the negative ones (lowering it). The output
membership functions in Fig. 2b extend 10 times farther along the
negative x-axis than along the positive x-axis. It is essential that
divergence be avoided, so aggressive reductions in relaxation fac-
tor are useful. On the other hand, even when the simulation is
rather close to convergence, a stiff simulation can be tipped into
instability by even a mild increase in relaxation factor. The values
of px, py, and pz used here give optimal performance for the case of
conjugate convection in one wall at Gr = 106.

The program begins execution with all relaxation factors set to a
default value of 1. The rule set is applied on every iteration. If
divergence occurs, which is recognized when computed values
hit the machine limit, the program automatically restarts with
relaxation factors that are 10% lower. When magnitudes of the
residual vectors are increasing, positive increments in relaxation
factors called for by the fuzzy rules are ignored. After the incre-
ment in relaxation factor is defuzzified, the relaxation factor is
updated by

aðnþ 1Þ ¼ aðnÞ þ DaðnÞ

The validity of the fuzzy logic algorithm was first tested with
the benchmark problem similar to the one discussed above but
with the conductance ratio (Cr) of 1.0 as done in [14–16]. The con-
ductance ratio is defined as

Cr ¼ kwL
kf t
where kw and kf are the thermal conductivities of the solid wall and
fluid, respectively. Table 2 shows the comparison of the results with
the benchmark results for different values of Grashof number.

The grid size used for the rectangular domain was 40 � 34. Out
of the 40 vertical grid lines used for discretizing the x-axis, a dis-
proportionate share of 10 grid lines were used for simulating the
solid wall conditions. The grid was packed close to the solid walls
and the solid-fluid interface so that the boundary layer could be
well resolved. The wall was modeled as a fluid of very high viscos-
ity. The grid layout was chosen after a number of trial numerical
experiments, the results of which were summarized in [16]. The
rectangular enclosure was considered for different tilt angles, i.e.
the inclination of the acceleration due to gravity with respect to
the vertical axis. Three different values of tilt angle h = 0�, 45�,
and 80� are analyzed. Cr was varied from 0.01 to 100.

Table 3 shows the number of iterations required with different
constant relaxation factors and with the controller algorithm for
inclination angles of h = 0�, 45�, and 80�, respectively, at Cr = 0.01.
For all the inclination angles it was found that the controller was
able to find a converged solution for higher values of Grashof
number as compared to the best constant relaxation factor. At



Fig. 5. Comparison of zones of convergence for Problem 1 with fixed relaxation factors and variable (controlled) relaxation factors, h = 0� (dots represent converged solutions
and crosses represent divergence).

Fig. 6. Rectangular domain with conduction in two side walls.
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the no-inclination case, the controller found a converged solution
until Gr = 1012; for inclination angles of 45� and 80�, the Grashof
number limits are Gr = 1010 and Gr = 1011, respectively. The con-
stant relaxation factors were never able to find a converged solu-
tion above Gr = 108. In the case of low constant relaxation factors,
such as 0.1, divergence probably occurs because round-off errors
accumulate faster than solution corrections converge. In addition,
low relaxation factors typically lead to a large number of iterations.
Increasing the inclination angle of the enclosed cavity increases the
degree of complexity and makes convergence less likely.

For higher values of Cr (Cr = 1.0) and at h = 80� the constant
relaxation factor fails to find a converged solution even for lower
values of Grashof number. Divergence is defined as the condition
when the algorithm fails to find a converged solution in 100,000
iterations. However the fuzzy controller algorithm found a con-
verged solution up to Gr = 1010. For Cr = 10.0 and h = 80� this value
was Gr = 1012. Also at h = 80� the controller algorithm outper-
formed the constant relaxation factors case. Thus at higher values
of Cr ( = 1.0, 10.0 and 100.0) and at h = 80� the constant relaxation
factors had difficulty in finding a converged solution; however, the
controller was limited by Gr = 1010, 1012 and 109 for Cr = 1.0, 10.0
and 100.0, respectively.

Fig. 5 shows a graphical representation of the zone of conver-
gence for different values of Cr at h = 0� for the given problem.
The relaxation factor and the controller are plotted on the x-axis
while the logarithmic scale for Grashof number is used in the
y-axis. The dots represent converged solutions and the x’s repre-
sent divergence. The shaded region represents the zone of conver-
gence for different Cr. As seen the zone is considerably extended
when using the controller algorithm.

At higher values of Grashof number, the flow may not remain
laminar. In the actual physical domain, small disturbances are
accentuated and turbulence develops. In the numerical simulation,
the problem becomes more and more ill-conditioned as the Gras-
hof number becomes larger. One advantage of the controller is that
it can solve such ill-conditioned cases, i.e., cases where small
changes in the input lead to large changes in the output.
2.2. Problem 2 – Rectangular cavity with conjugate heat transfer in
two side walls

The membership functions were optimized for natural convec-
tion in a square enclosure with one conjugate wall. We now
explore their application in a similar geometry, one with two walls,
to identify the zone of convergence. (see Fig. 6). The boundary con-
ditions are maintained the same.

Figs. 7 and 8 show the graphical representation of the zone of
convergence for different values of Cr at h = 0� and h = 45�, respec-
tively. When using the controller algorithm the range of shaded
region is increased showing the efficacy of the algorithm. Interest-
ingly, when the enclosure is tilted at 45� for Cr = 0.01, no constant
value of relaxation factor was found that produced convergence for
Gr = 107. However, the controller was able to achieve convergence
for Gr = 109 in a small number of iterations (=2201). The controller
operates by selecting small values of relaxation factor early in the



Fig. 7. Zones of convergence for Problem 2 with fixed relaxation factors and variable (controlled) relaxation factors, h = 0.

Fig. 8. Zones of convergence for Problem 2 with fixed relaxation factors and variable (controlled) relaxation factors, h = 45�.
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iteration to avoid oscillatory divergence and then using larger
values later in the iteration to avoid round-off error induced diver-
gence. The constant relaxation factors fail due to one or the other
effect.

2.3. Problem 3 – Rectangular cavity with conjugate heat transfer in
three walls

This problem considers conjugate heat transfer in three walls,
two side walls and the bottom wall, as shown in Fig. 9, the bound-
ary conditions are maintained the same. Also the thickness of the
walls is the same.
Fig. 10 shows the graphical representation of the zone of
convergence for different values of Cr at h = 80� for the given prob-
lem. Constant relaxation factors of 0.6 and 0.9 were not able to find
a converged solution for Gr = 107 at all the values of Cr. A value of
0.1 as the relaxation factor increased the area of convergence but
was limited by Gr = 108.

2.4. Problem 4 – Rectangular cavity with conjugate heat transfer in all
the walls

This problem involves conjugate heat transfer in all four walls.
The boundary conditions are the same as described for the above



Fig. 9. Rectangular domain with conduction in three walls.
Fig. 11. Rectangular domain with conduction in all the walls.
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cases. Also, an equal number of grid lines were used to discretize
all the four walls. Fig. 11 shows the problem under consideration.
There is a temperature gradient from the left wall (at lower
temperature) to the right wall (at higher temperature).

Fig. 12 shows the graphical representation of the zone of con-
vergence for different values of Cr at h = 80� for the given problem.
For Cr = 0.01, 1.0 and 10.0 all the constant relaxation factor values
(=0.1, 0.3, 0.6 and 0.9) were not able to find a converged solution
for Gr = 107, however, the controller extended the zone of conver-
gence till Gr = 8 � 107, 1011 and 1011, respectively. For Cr = 100.0
the relaxation factor values of 0.1 and 0.3 increased the conver-
gence region till Gr = 108 however the same behavior was observed
for the 0.6 and 0.9 values of relaxation factor. The controller how-
ever found a converged solution till Gr = 1012.

3. Probability of convergence

Another way to view the efficacy of the controller for problems
of the type studied here is to define a ‘‘probability of convergence”
Fig. 10. Zones of convergence for Problem 3 with fixed relaxation
as the number of cases which converged divided by the total num-
ber of simulations attempted. To find the true value of this proba-
bility, an infinite number of cases would have to be considered.
However, a reasonable estimate of the probability can be deter-
mined by examining a large number of cases. In this investigation,
a total of 2400 cases were considered.

The probability of convergence for all the problems studied at
h = 0�, 45� and 80� are shown in Figs. 13–15 respectively. At
h = 0� and 45� the probability of convergence was much better
for the controller algorithm than for the constant cases. The 0.1
constant relaxation factor showed 100% convergence probability
till 4 � 107 for at h = 0� after which the probability decreased until
at Gr = 109 it was 0. For higher values of relaxation factor there was
a rapid decline in the convergence probability with increasing val-
ues of Grashof number.

For h = 80� the probability of convergence with fixed relaxation
factors was zero after Gr = 109. However the controller showed
some non-zero probability until Gr = 1012. On the other hand, the
probability was less than 50% for any of the constant relaxation
factors.
factors and variable (controlled) relaxation factors, h = 80�.



Fig. 12. Zones of convergence for Problem 4 with fixed relaxation factors and variable (controlled) relaxation factors, h = 80�.
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Fig. 13. Probability of convergence at different Grashof number for h = 0�.
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Fig. 14. Probability of convergence at different Grashof number for h = 45�.
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Fig. 15. Probability of convergence at different Grashof number for h = 80�.
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4. Conclusions

The present work investigates the limits of convergence for lam-
inar natural convection in enclosed cavities with conjugate heat
effects applied to different walls of the cavity. The controller algo-
rithm using a fuzzy set of rules outperformed the manual relaxation
factors in all the cases studied. It is reasonable to expect that when
fuzzy logic is used to adjust relaxation factors in other CFD simula-
tions, convergence will be enhanced. The decision making system
was based on monitoring the behavior of characteristic computa-
tional parameters and applying a fuzzy set of rules with pre-defined
membership functions in order to tune the relaxation factors in a
direction which provides the best speed of convergence. The control-
ler is not limited to this geometry or physical condition, but is gener-
ally applicable to a wide variety of situations, as shown by Dragolovic
et al. [17]. It is expected that the controller will extend the range of
convergence in other simulations as it does in this case.
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